Programmatically creating tabsets in R

Published

March 28, 2025

Introduction

I recently was working on a web app and encountered a situation where I wanted to create tabs based on some variable in a data frame. The tab names and content would change when the data was subsetted based on some input controls.

Here is how to do that in shiny, using the palmerpenguins dataset as an example.

library(bslib)
library(dplyr)
library(purrr)
library(shiny)
library(reactable)
library(glue)
library(ggplot2)
library(palmerpenguins)
data(penguins)
ggplot2::theme_set(theme_bw(15))

The UI

First I set up the ui with two components:

  • an input component that filters the dataset, and
  • a uiOutput component for the dynamic tabs which will be rendered server-side
ui <- bslib::page_fillable(
  radioButtons(
    'select_species', 
    'Filter by species', 
    choices = unique(penguins$species)
  ),
  shiny::uiOutput('dynamic_navset_card')
)

Dynamic render

Next is the server code. The server code does 3 things:

  1. filter the penguins dataset penguin_filtered, based on the radio buttons
  2. dynamically render the ui component based on the island column in the filter penguin dataset i.e. penguin_filtered$island
  3. Create content for each tab, here I chose a histogram over year.
server <- function(session, input, output) {
  # 1. filter by species
  penguins_filtered <- reactive({
    req(input$select_species)
    penguins |>  filter(species == input$select_species)
  })
  
  # 2. create the ui based on the `island` column
  output$dynamic_navset_card <- renderUI({
    nav_items <- unique(penguins_filtered()$island) |> purrr::map(
      ~nav_panel(
        title = .x,
        plotOutput(glue("plot_{.x}"))
      ))
    navset_card_pill(!!!nav_items)
  })
  
  # 3. create the plots
  observe({
    walk(
      unique(penguins_filtered()$island), 
      function(x) {
        id <- glue("plot_{x}")
        output[[id]] <- renderPlot({
          penguins_filtered() |>  
            filter(island == x) |> 
            ggplot(aes(x = year)) + 
            geom_histogram(stat = 'count') +
            labs(title = glue('Number of penguins by year for island {x}')) 
        })
      }
    ) 
  })
}

The tricky part is figuring out how to dynamically assign the output ids. Here, I programmatically create the ids and then assign them content (plots) based on the relevant subset of data.

The app

#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 400
library(bslib)
library(dplyr)
library(purrr)
library(shiny)
library(reactable)
library(glue)
library(ggplot2)
library(palmerpenguins)
data(penguins)
ggplot2::theme_set(theme_bw(15))

ui <- bslib::page_sidebar(
  sidebar = sidebar(
    radioButtons(
      'select_species', 
      'Filter by species', 
      choices = unique(penguins$species)
    )
  ),
  shiny::uiOutput('dynamic_navset_card')
)

server <- function(session, input, output) {
  # 1. filter by species
  penguins_filtered <- reactive({
    req(input$select_species)
    penguins |>  filter(species == input$select_species)
  })
  
  # 2. create the ui based on the `island` column
  output$dynamic_navset_card <- renderUI({
    nav_items <- unique(penguins_filtered()$island) |> purrr::map(
      ~nav_panel(
        title = .x,
        plotOutput(glue("plot_{.x}"), width = "80%")
      ))
    navset_card_pill(!!!nav_items, height = 360)
  })
  
  # 3. create the plots
  observe({
    walk(
      unique(penguins_filtered()$island), 
      function(x) {
        id <- glue("plot_{x}")
        output[[id]] <- renderPlot({
          penguins_filtered() |>  
            filter(island == x) |> 
            ggplot(aes(x = year)) + 
            geom_histogram(stat = 'count') +
            labs(title = glue('Number of penguins by year for island {x}')) 
        })
      }
    ) 
  })
}
shiny::shinyApp(ui, server)