library(bslib)
library(dplyr)
library(purrr)
library(shiny)
library(reactable)
library(glue)
library(ggplot2)
library(palmerpenguins)
data(penguins)
::theme_set(theme_bw(15)) ggplot2
Programmatically creating tabsets in R
Introduction
I recently was working on a web app and encountered a situation where I wanted to create tabs based on some variable in a data frame. The tab names and content would change when the data was subsetted based on some input controls.
Here is how to do that in shiny, using the palmerpenguins dataset as an example.
The UI
First I set up the ui with two components:
- an input component that filters the dataset, and
- a
uiOutput
component for the dynamic tabs which will be rendered server-side
<- bslib::page_fillable(
ui radioButtons(
'select_species',
'Filter by species',
choices = unique(penguins$species)
),::uiOutput('dynamic_navset_card')
shiny )
Dynamic render
Next is the server code. The server code does 3 things:
- filter the penguins dataset
penguin_filtered
, based on the radio buttons - dynamically render the ui component based on the
island
column in the filter penguin dataset i.e.penguin_filtered$island
- Create content for each tab, here I chose a histogram over year.
<- function(session, input, output) {
server # 1. filter by species
<- reactive({
penguins_filtered req(input$select_species)
|> filter(species == input$select_species)
penguins
})
# 2. create the ui based on the `island` column
$dynamic_navset_card <- renderUI({
output<- unique(penguins_filtered()$island) |> purrr::map(
nav_items ~nav_panel(
title = .x,
plotOutput(glue("plot_{.x}"))
))navset_card_pill(!!!nav_items)
})
# 3. create the plots
observe({
walk(
unique(penguins_filtered()$island),
function(x) {
<- glue("plot_{x}")
id <- renderPlot({
output[[id]] penguins_filtered() |>
filter(island == x) |>
ggplot(aes(x = year)) +
geom_histogram(stat = 'count') +
labs(title = glue('Number of penguins by year for island {x}'))
})
}
)
}) }
The tricky part is figuring out how to dynamically assign the output ids. Here, I programmatically create the id
s and then assign them content (plots) based on the relevant subset of data.
The app
#| '!! shinylive warning !!': |
#| shinylive does not work in self-contained HTML documents.
#| Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 400
library(bslib)
library(dplyr)
library(purrr)
library(shiny)
library(reactable)
library(glue)
library(ggplot2)
library(palmerpenguins)
data(penguins)
ggplot2::theme_set(theme_bw(15))
ui <- bslib::page_sidebar(
sidebar = sidebar(
radioButtons(
'select_species',
'Filter by species',
choices = unique(penguins$species)
)
),
shiny::uiOutput('dynamic_navset_card')
)
server <- function(session, input, output) {
# 1. filter by species
penguins_filtered <- reactive({
req(input$select_species)
penguins |> filter(species == input$select_species)
})
# 2. create the ui based on the `island` column
output$dynamic_navset_card <- renderUI({
nav_items <- unique(penguins_filtered()$island) |> purrr::map(
~nav_panel(
title = .x,
plotOutput(glue("plot_{.x}"), width = "80%")
))
navset_card_pill(!!!nav_items, height = 360)
})
# 3. create the plots
observe({
walk(
unique(penguins_filtered()$island),
function(x) {
id <- glue("plot_{x}")
output[[id]] <- renderPlot({
penguins_filtered() |>
filter(island == x) |>
ggplot(aes(x = year)) +
geom_histogram(stat = 'count') +
labs(title = glue('Number of penguins by year for island {x}'))
})
}
)
})
}
shiny::shinyApp(ui, server)