R/predictAge.R
    predictAge.RdpredictAge Multiplies the coefficients from one of three
epigenetic gestational age clocks, by the corresponding CpGs in a supplied
betas data.frame.
predictAge(betas, type = "RPC")A vector of length m, containing inferred gestational age.
Predicts gestational age using one of 3 placental gestational age clocks: RPC, CPC, or refined RPC. Requires placental DNA methylation measured on the Infinium 27K/450k/EPIC methylation array. Ensure as many predictive CpGs are present in your data, otherwise accuracy may be impacted.
It's recommended that you have all predictive CpGs, otherwise accuracy may vary.
# Load placenta DNAm data
library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
data(plBetas)
data(plPhenoData)
plPhenoData %>%
    mutate(inferred_ga = predictAge(plBetas, type = "RPC"))
#> 558 of 558 predictors present.
#> # A tibble: 24 × 8
#>    sample_id  sex    disease      gestation_wk ga_RPC ga_CPC ga_RRPC inferred_ga
#>    <fct>      <chr>  <chr>               <dbl>  <dbl>  <dbl>   <dbl>       <dbl>
#>  1 GSM1944936 Male   preeclampsia           36   38.5   38.7    38.7        38.5
#>  2 GSM1944939 Male   preeclampsia           32   33.1   34.2    32.6        33.1
#>  3 GSM1944942 Female preeclampsia           32   34.3   35.1    33.3        34.3
#>  4 GSM1944944 Male   preeclampsia           35   35.5   36.7    35.5        35.5
#>  5 GSM1944946 Female preeclampsia           38   37.6   37.6    36.6        37.6
#>  6 GSM1944948 Female preeclampsia           36   36.8   38.4    36.7        36.8
#>  7 GSM1944949 Female preeclampsia           37   38.2   38.1    37.7        38.2
#>  8 GSM1944950 Male   preeclampsia           35   35.9   38.0    35.1        35.9
#>  9 GSM1944951 Female normal/heal…           39   40.2   41.0    39.6        40.2
#> 10 GSM1944952 Male   normal/heal…           38   39.7   39.6    39.5        39.7
#> # ℹ 14 more rows